Refine Your Search

Topic

Author

Search Results

Technical Paper

NOx Formation in Diesel Engines for Various Fuels and Intake Gases

1995-02-01
950213
The NO formation is essentially determined by the flame temperature. In an engine the latter depends on the composition of the fuel and the intake gas. In this study the efficiency of various NO reducing measures is analysed by means of a comparison of measurements and computations for the Most frequent operation point of a 1.9 1 DI Diesel engine. The O2 concentration, which is shown to be the dominant source of influence on the flame temperature and NO formation, is varied using synthetic gas mixtures or by EGR. The molar heat capacity of CO2 and H2O in the recirculated exhaust gas, the intake temperature and the H/C ratio in the fuel are less important for the formation of NO. Measures which reduce the NO formation increase the ignition delay and thereby the fraction of the premixed combustion. The impact of EGR on the combustion process is illustrated by high speed filming.
Technical Paper

Effect of EGR on Spray Development, Combustion and Emissions in a 1.9L Direct-Injection Diesel Engine

1995-10-01
952356
The spray development, combustion and emissions in a 1.9L optical, four-cylinder, direct-injection diesel engine were investigated by means of pressure analysis, high-speed cinematography, the two-colour method and exhaust gas analysis for various levels of exhaust gas recirculation (EGR), three EGR temperatures (uncontrolled, hot and cold) and three fuels (diesel, n-heptane and a two-component fuel 7D3N). Engine operating conditions included 1000 rpm/idle and 2000 rpm/2bar with EGR-rates ranging from 0 to 70%. Independent of rate, EGR was found to have a very small effect on spray angle and spray tip penetration but the auto-ignition sites seemed to increase in size and number at higher EGR-rates with associated reduction in the flame luminosity and flame temperature, by, say, 100K at 50% EGR.
Technical Paper

Time-Resolved Analysis of Soot Formation and Oxidation in a Direct-Injection Diesel Engine for Different EGR-Rates by an Extinction Method

1995-10-01
952517
The formation of soot during the first phase and the oxidation of soot during the later phase of the combustion in a direct-injection diesel engine have been investigated in detail by an extinction method. The experiments were performed in a 1.9 l near-production high-speed four-cylinder in-line direct-injection diesel engine for passenger cars for different rates of exhaust gas recirculation (EGR) and for different fuels. The measurements result in crank angle resolved and cycle-averaged soot mass concentrations in the piston bowl and the combustion chamber. The results show that with increasing EGR-rates the amount of soot formed is increased only slightly but the amount of soot oxidized during combustion decreases significantly. This is assumed to be the main reason for the increase of soot in the exhaust gas with increasing EGR-rates.
Technical Paper

Operating a Gasoline Engine at Constant low Temperature Conditions. The Influence of Different Fuel Droplet Sizes

1996-10-01
961999
This paper describes an investigation of one operating point of the transient warmup curve of a gasoline engine. Coolant liquid and oil of this engine have been cooled down to a constant low level in order to perform detailed measurements and an analysis of this particular warmup point. The influence of low coolant temperature, different pressure drop in an air assisted fuel injection system and a variation of ignition angles on specific fuel consumption, exhaust emissions, energy conversion etc. will be shown. The results show that the suggested test procedure (keeping the coolant temperature at a constant low level) provides the possibility to simulate the behaviour of an engine with air assisted fuel injection during warmup. During this warmup period it is desired to run the engine with retarded ignition timing to realize a fast catalyst warmup.
Technical Paper

SMART Catalyst Development Approach Applied to Automotive Diesel Application

1996-10-01
962048
Strategic Materials at Reaction Temperatures (SMART) is an approach used to design washcoat systems for passive 4-way emission control catalysts. Light duty diesel vehicles need to meet the European Motor Vehicle Emissions Group (MVEG) cycle or U. S. Federal test procedure (FTP 75). Emissions that are monitored include hydrocarbon (HC), nitrogen oxides (NOx), carbon monoxide (CO) and total particulate matter (TPM). Low engine-exhaust temperatures (< 200°C during city driving) and high temperatures (> 500-800°C under full load and wide-open throttle) make emission control a formidable task for the catalyst designer Gas phase HC, CO and NOx reactions must be balanced with the removal of the soluble organic fraction for the vehicle to be in compliance with regulations. The SMART approach uses model gases under typical operating conditions in the laboratory to better understand the function of individual washcoat components.
Technical Paper

Research Results on Processes and Catalyst Materials for Lean NOx Conversion

1996-10-01
962041
In a joint research project between industrial companies and a number of research institutes, nitrogen oxide conversion in oxygen containing exhaust gas has been investigated according to the following procedure Basic investigations of elementary steps of the chemical reaction Production and prescreening of different catalytic material on laboratory scale Application oriented screening of industrial catalyst material Catalyst testing on a lean bum gasoline engine, passenger car diesel engines (swirl chamber and DI) and on a DI truck engine Although a number of solid body structures show nitrogen oxide reduction by hydrocarbons, only noble metal containing catalysts and transition metal exchanged zeolites gave catalytic efficiencies of industrial relevance. A maximum of 25 % NOx reduction was found in the European driving cycle for passenger cars, about 40 % for truck engines in the respective European test.
Technical Paper

Quantitative In-Cylinder NO LIF Measurements with a KrF Excimer Laser Applied to a Mass-Production SI Engine Fueled with Isooctane and Regular Gasoline

1997-02-24
970824
Quantitative 1-D spatially-resolved NO LIF measurements in the combustion chamber of a mass-production SI engine with port-fuel injection using a tunable KrF excimer laser are presented. One of the main advantages of this approach is that KrF laser radiation at 248 nm is only slightly absorbed by the in-cylinder gases during engine combustion and therefore it allows measurements at all crank angles. Multispecies detection turned out to be crucial for this approach since it is possible to calculate the in-cylinder temperature from the detected Rayleigh scattering and the simultaneously acquired pressure traces. Additionally, it allows the monitoring of interfering emissions and spectroscopic effects like fluorescence trapping which turned out to take place. Excitation with 248 nm yields LIF emissions at shorter wavelengths than the laser wavelength (at 237 and 226 nm).
Technical Paper

NO Laser-Induced Fluorescence Imaging in the Combustion Chamber of a Spray-Guided Direct-Injection Gasoline Engine

2004-06-08
2004-01-1918
In direct-injection gasoline (GDI) engines with charge stratification, minimizing engine-out nitrogen oxide (NOx) emission is crucial since exhaust-gas aftertreatment tolerates only limited amounts of NOx. Reduced NOx production directly lowers the frequency of energy-inefficient catalyst regeneration cycles. In this paper we investigate NO formation in a realistic GDI engine. Quantitative in-cylinder measurements of NO concentrations are carried out via laser-induced fluorescence imaging with excitation of NO (A-X(0,2) band at 248 nm), and subsequent fluorescence detection at 220-240 nm. Engine modifications were kept to a minimum in order to provide results that are representative of practical operating conditions. Optical access via a sapphire ring enabled identical engine geometry as a production line engine. The engine is operated with commercial gasoline (“Super-Plus”, RON 98).
Journal Article

The Thermodynamics of Exhaust Gas Condensation

2017-06-29
2017-01-9281
Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

Impact of Sulfur in Gasoline on Nitrous Oxide and Other Exhaust Gas Components

2000-03-06
2000-01-0857
Sulfur content in gasoline is known to reduce the efficiency of the catalytic converters that are used to reduce pollutants in the exhaust gas of cars. There is some concern that nitrous oxide emissions (N2O) increase when fuel with a high sulfur content is used. The engine out and tailpipe mass emissions of two cars conforming to the California LEV-standard were analyzed. The influence of the fuel sulfur content on the emissions of the regulated and some unregulated pollutants during FTP test cycles was determined. Four fuels covering the range from less than 1 to 330 ppm sulfur content were used. Over that range of fuel sulfur concentration the engine out emissions of sulfur dioxide (SO2 ) of both cars increased. Tailpipe emissions of SO2 were only found at fuel sulfur concentrations of 150 and 330 ppm. For both vehicles a correlation between the N2O emissions and the fuel sulfur content was found.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Vw Lupo, the WorldS First 3-Liter Car

2000-11-01
2000-01-C044
After the success of the 4-cylinder 1.9-liter TDI and SDI direct-injection diesel engines in the Passat, Jetta and Polo classes, a new 3-cylinder TDI has been developed for use in the "Lupo 3L,' a compact car with a fuel consumption of 3 liters per 100 km. A new injection system with unit injectors, together with a fully electronically controlled engine management system featuring drive-by-wire- technology, a turbocharger with variable turbine geometry and a fully automated mechanical gearbox and clutch, for the first time ensures the potential to meet the stringent D4 exhaust emissions level and to achieve excellent fuel economy. The wheel-torque based engine and gearbox management systems optimize engine operation in terms of efficiency and emissions.
Technical Paper

Fuel/Air-Ratio Measurements in Direct Injection Gasoline Sprays Using 1D Raman Scattering

2000-03-06
2000-01-0244
One dimensional Spontaneous Raman Scattering measurements (RS) have been performed in a spray (standard gasoline, one-component and multi-component model fuels) which was operated in a high-temperature, high-pressure chamber, so that realistic engine conditions have been simulated. The present work investigates under what conditions 1D-RS can be employed for fuel/air-ratio measurements in realistic DI gasoline sprays. The distance from the spray axis has been determined, til that, coming from the outside, quantitative Raman measurement are possible. The equivalence ratio has been quantified for the one component fuel close to the spray. It turns out that the measurement error depends strongly on the type of fuel. These problems are caused by the PAH (polycyclic aromatic hydrocarbon) content of the fuel, which leads to interfering laser-induced fluorescence signals.
Technical Paper

Unregulated Exhaust Gas Components of Modern Diesel Passenger Cars

1999-03-01
1999-01-0514
In this paper the emissions of regulated and unregulated exhaust gas components of a fleet of diesel passenger cars measured at Volkswagen in the eighties are compared with the results of a new investigation on modern direct-injection diesel vehicles. The potential of improved diesel fuels to reduce emissions is also examined. The emissions of regulated exhaust gas components as well as fuel consumption have been reduced significantly in the last years as a result of the systematic further development of conventional swirl chamber engines and exhaust gas after-treatment as well as the introduction of SDI/TDI engines. As was to be expected, this has also had a positive effect on the emissions of unregulated exhaust gas components. It has been possible, for example, to reduce the polycyclic aromatic hydrocarbons adsorbed on diesel particulates by more than 95%.
Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
Technical Paper

Feasible Steps towards Improved Crash Compatibility

2004-03-08
2004-01-1167
Compatibility has been a research issue for many years now. It has gained more importance recently due to significant improvements in primary and secondary safety. Using a rigorous approach, combining accident research and theoretical scientific considerations, measures to improve vehicle-vehicle compatibility, with an emphasis on feasibility, were discussed. German accident research statistics showed that frontal impacts are of higher statistical significance than side impacts. Based on this and the high potential for improvement due high available deformation energy, the frontal impact configuration was identified as the most appropriate collision mode for addressing the compatibility issue. In side impacts, accident avoidance was identified as the most feasible and sensible measure. For frontal vehicle-vehicle impacts, both trucks and passenger cars were identified as opponents of high statistical significance.
X